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Abstract--Simple expressions are given for the effective Newtonian viscosity as a function of concentration 
as well as for the effective visco-elastic behavior as a function of concentration and frequency for neutral 
monodisperse hard sphere colloidal suspensions over the entire fluid range. The basic physical mechanisms 
underlying these formulae are discussed. The agreement with existing experiments is very good. Extensions 
to charged colloidal suspensions and the incorporation of hydrodynamic interactions in the theory are 
discussed. © 1997 Elsevier Science Ltd. 
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1. I N T R O D U C T I O N  

The problem of the computat ions of  the macroscopic properties, such as the viscosity, of  a 
concentrated colloidal suspension from a molecular point of  view is a very difficult one, because 
it deals with a complex strongly interacting many particle system. It is part  of  a large class of  
'effective' behavior problems, where to a relatively simple system (the solvent here) particles or, 
in general, inclusions are added (Felderhof et al. 1982). For  low concentrations of  the added 
inclusions, systematic methods are in principle available to obtain corrections to the pure system 
behavior as a function of the concentration of the inclusions. The prototype of such a method is 
the virial expansion for computing the equation of state of  a moderately dense gas in equilibrium 
as a correction to that of  an ideal gas, in a power series in the (number) density n of  the gas at 
a given temperature T(Kest in  and Dorfman 1971, Ch. 7; McQuarrie 1976, Ch. 12; Felderhof 1988). 
The technique used for this is that of  cluster expansions, where the effect on the macroscopic 
properties of  the system (here, the pressure) due to clusters or groups of particles (inclusions) of  
increasing size are systematically taken into account. A power series in the density then arises since 
each higher term in the expansion is multiplied by a higher power of  the expansion parameter  (e.g. 
the density or concentration) than the previous one, since it includes the effect of  a cluster consisting 
of  one more particle (inclusion) than the previous term. In practice one can usually not handle 
clusters consisting of  more than two particles and this restricts the cluster expansion method to 
low particle (inclusion) densities. 

In order to make progress for a high density or a high concentration of inclusions, one has to 
proceed quite differently. What  one has to do is to isolate the physically important  effects due to 
the inclusions and then, hopefully, take these into account quantitatively in a way that leads to 
a practically usable formula, which gives the density or concentration dependence of the 
macroscopic properties as observed experimentally. It is this that we have attempted to do for 
concentrated colloidal suspensions consisting of  monodisperse hard sphere neutral particles with 
diameter tr in a solvent of  viscosity r/0. The problem we address is: what is the effective viscosity 
of  such a suspension as a function of the concentration (or density n) of  the colloidal particles: 
r/~ (4~; o9), where q~ = nmr3/6 is the volume fraction of  the particles and o2 the frequency of  an 

tThis paper is an extension of a paper given at the Thirteenth Symposium on Energy Engineering Sciences, 15-17 May 
1995 at Argonne National Laboratory, published by Argonne National Laboratory, CONF-9505200, p. 1. 
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imposed oscillatory shear field of amplitude 70:7(0 = 70 e-~°''. We shall outline an approximate, yet 
satisfactory, solution to this problem derived from first principles, but containing a number of 
physically reasonable, but nevertheless severe approximations. The ultimate justification for these 
approximations is that they seem to lead to explicit expressions for r/°~ (qS; o)) which agree well with 
experiment over the entire fluid range of the colloidal suspension. The problem of justifying them 
theoretically remains largely open. 

In section 2 we briefly outline the steps and approximations that lead from the fundamental 
Smoluchowski equation to the basic equation for the colloidal particle distribution in the 
suspension and present the solution of this equation to compute ~/e~ (qS; co). In section 3 we give 
explicit formulae for the effective Newtonian viscosity r/~ ~ (4))= qe~ (4~; CO = 0) and the full 
visco-elastic behavior, as contained in r/e~ (4); e)). In section 4 we compare our theoretical results 
with experiment and in section 5, we discuss our results and some possible extensions. 

2. BASIC EQUATIONS 

In this section we discuss the basic equation that describes the spatial distribution of the colloidal 
particles in a sheared suspension. We start from the N-particle Smoluchowski equation for a 
colloidal suspension of N identical hard sphere particles in the presence of an applied shear rate 
7(0, where hydrodynamic interparticle interactions are not explicitly included (Pusey and Tough 
1982; Russel et al. 1989, pp. 262-266; Pusey 1991, p. 763). Integrating this equation over the 
positions of all particles but two (1 and 2), one obtains an equation for the nonequilibrium pair 
distribution function g2(R; r; ~b; 70; co; t) of the suspension, which involves the three-particle 
distribution function g3. Neglecting g3 and the dependence of g2 on the center of mass 
R = (r~ + r2)/2 of the two particles 1 and 2 at the positions r,(i -- 1, 2), respectively, and making 
a Fourier transform of g2 with respect to the relative coordinate r = r~ - r2, one arrives for low 
concentrations, i.e. for small qS, at an equation of the form (de Schepper and Cohen 1994) 

~t + 2D°k2 -- 7oe ..... k~ 6S(k; q~; co; 70; t) 

i~ ~t 
= ~ ' o e -  r k ~ S e q (  k; 4)" [ l ]  

Here 6S(k; qS; co; 70; t) = S(k; ~b; co; 7o; t) - Seq(k; c~), is the deviation of the nonequilibrium 
structure factor S(k; qS; e); 70; t ) - - the Fourier transform of g2(r; qS; co; 70; t ) - - f rom that in 
equilibrium: Soq(k; q~)--the Fourier transform of the equilibrium radial distribution function 
g,q(r; qS)--where r = Ir[ and k = Ik[. The term 2Dok 2 represents the free diffusion of the two colloidal 
particles, each with the Stokes-Einstein diffusion coefficient D o = k B T / 3 r c q o a ,  where kB is 
Boltzmann's constant. In deriving [1] the impenetrability of the two hard sphere particles has been 
neglected (Verberg et al. unpublished), while the S~q (k; q~) represents, in [1], only its low density 
approximation: Seq(k;~)= 1 - 2 4 0 j ~ ( k a ) +  O(q52), where j~ (ka)  is the first spherical Bessel 
function. 

We now upgrade the low concentration equation [1] to one hopefully physically meaningful and 
yet mathematically still tractable for high concentrations in two steps, which can be considered as 
partially accounting for the most important contributions of g3, which was neglected in the 
derivation of[l] .  These steps are: (1) a static one, by using the full Seq (k; ~b) on the right side (r.h.s.) 
of [1] for all ~b. S0q (k; ~b) is known theoretically for all densities, since it is identical to that for 
a (pure) fluid of hard spheres (Henderson and Grundke 1975). It exhibits for 0.3 < ~b < 0.55 a very 
sharp maximum at k ' ~ k * ,  where k*cr~ 2g, implying a periodic particle configuration 
characterized by a wavelength 2* = 2folk* ,~ cr (cf. figure 1). This sharp maximum at these large 
values of ~b reflects physically a highly ordered state of the colloidal particles in the suspension on 
the length scale 2* ~ a. This means that each particle finds itself in a cage formed by its nearest 
neighbors, with a surface to surface distance of neighboring particles of the order of or/10, so that 
the particle can only escape out of its cage with difficulty (Cohen and de Schepper 1992a, p. 387, 
1992b, p. 359) (cf. figure 2); (2) a dynamic one, by replacing the low concentration (free) diffusion 
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coefficient Do by a cage-diffusion coefficient De(k), which characterizes quantitatively the diffusion 
(i.e. escape) of a particle out of its cage at high concentrations (de Schepper et al. 1989; Pusey et al. 
1990; Cohen and de Schepper 1992a, 1992b) 

D0 
Do --> De(k) - Z( q~ )Seq(k; ~~ ) d(k )" [2] 

Here Z(~b) =- geq(a; c~), is the equilibrium radial distribution function at contact, i.e. g(r, ?p) for 
r = a. X(~b) is given in very good approximation by the Carnahan-Starling approximation 
Z(~b) = (1 - ~b/2)(1 - ~b) -3 = 1 + 2.5~b + 4.5~b 2 + O(~b 3) (McQuarrie 1976, pp. 250, 280; Hansen 
and McDonald 1986, pp. 36, 95) (cf. figure 4), where the O(~b) term is exact and the O(~b 2) term 
differs by 2% from the exact expression 4.59~b 2. d(k)  = 1/[1 - j o ( k a )  + 2j2(ka)], w i t h j d k a )  for the 
lth spherical Bessel function (cf. figure 1). We note that De(k) can be identified with the long-time 
diffusion coefficient (de Schepper et al. 1989). 

Dc(k)k 2 is sketched and compared with the results from light scattering experiments (Cohen and 
de Schepper 1991, 1992a, p. 392, 1992b, p. 362) for a typical large ~b in figure 3. 

The crucial cage-diffusion coefficient expression, [2], has been derived from the analogous cage 
diffusion expression in a (pure) dense hard sphere fluid (de Schepper et al. 1984), by replacing the 
low density hard sphere Boltzmann self-diffusion coefficient DB occurring there, by the 
Stokes-Einstein diffusion coefficient Do (de Schepper et al. 1989; Pusey et al. 1990). Since 
DB ,~ 10 4 cm2/s and Do ~ 10 -7 cm2/s, this involves a reduction in the value of the cage-diffusion 
coefficient by three orders of magnitude in the case of colloidal suspensions, i.e. of Brownian 
particle motion, as compared to ballistic hard sphere motion. We emphasize that this implies that 
physically the cage diffusion processes in the dense (pure) fluid and the concentrated colloidal 
suspension proceed qualitatively the same, but quantitatively much slower in the latter than in the 
former. 

Writing 6S(k; qS; ~o; ?0; t ) =  ~oe-~'~'6S(k; ~b; (o), substituting this in [1] and solving then for 
6S(k; ~b; ~o) in the limit ?0 ~ 0, i.e. of vanishing shear rate amplitude, gives 

kxk> S2q(k; ~b) 
6S(k; q~; a~) = ~ 2 D ~ ( ~  --- ito [3] 

where S~q(k; ~b) = dSeq(k; c~)/dk. 
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Figure I. Hard sphere Seq(k; ~b) for qb = 0.49 (solid line, Henderson and Grundke 1975) and d(k) (dashed 
line, cf. [2], as functions of ka. 
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Figure 2. (a) The central particle (black) is in a cage whose wall is formed by the particles connected by 
the thick black line. Each wall particle is itself the center of a cage, of which the black particle is part 
of the wall. This is illustrated for two wall particles of the black particle, for which the cage walls are 
formed by particles connected by a solid line or a dotted line, respectively; (b) cage-diffusion collisions 
of central particle l for fixed wall particles 2-7. The interparticle distances have been considerably enlarged 

for clarity. 

3. E F F E C T I V E  VISCOSITY 

In this sect ion we use the solut ion for the par t ic le  d i s t r ibu t ion  ob ta ined  in the previous  section 
to ob ta in  an explici t  expression for the effective viscosity. In o rder  to use [3], which is in Four i e r  
form, to ob ta in  an expression for the effective viscosity in the limit 70--~ 0, we a d a p t  the expression 
for  the viscosity of  a homogeneous  fluid for  part icles  in teract ing with a general  (cont inuous)  
po ten t ia l  V(r) (Verberg et al. unpubl ished;  de Schepper  et al. 1993) 

n:  ~V(r) 
n°~(~b; ~o) = r/~(~b) + ~ d r f i g ( r ;  ~q~; co')y -~x [41 

where r/~(~b) is a stat ic con t r ibu t ion  and the dynamic  con t r ibu t ion  is de te rmined  by fig(r; ~b; ~o) 
defined by 

g2(r; ~b; co; 70; t) = geq(r; q~) + fig(r; q~; o9)70e -~''' + 0(70) [5] 

to one appl icab le  to ha rd  spheres (which canno t  be Four i e r  t ransformed) .  This  is done  in a mean  
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spherical-like approx ima t ion  (Verberg et  al.  unpublished;  Hansen  and M c D o n a l d  1986, p. 126) by 
replacing V(r)  in [4] by - k B  TCoq (r; 49), where Coq(r; 49) is the equil ibrium direct correlat ion function 
for  hard spheres. Its Four ier  t r ans form C,q(k; 49) is related to Scq(k; 49) by nCeq(k; 49) = 1 - 1/ 
S~q(k; 49). Earlier, Russell and Gas t  (1986) replaced the hard sphere pair  potent ial  by the potent ial  
o f  mean  force (see also Hansen  and M c D o n a l d  1986, p. 1 1 3), ra ther  than by the direct correlat ion 
function. Subsequent ly  Wagner  and Russel found that  this approx ima t ion  does not  work  at high 
concentrat ions,  while our  replacement  does. 

Using then [3] in the so-obta ined expression for  r/¢~ (49; co) one finds 

co) = + . . . . .  L @I 2D (k)k2 --  ico [6]  

for  the general visco-elastic behavior  of  the suspension. Here  r/~(49), the first term on the r.h.s, o f  
[6], is the static (infinite frequency) cont r ibut ion  to the effective viscosity and domina tes  r/e~(49; co) 
at low concentra t ions .  The  second te rm on the r.h.s, o f  [6] contains the contr ibut ions  due to cage 
diffusion, which come mainly  f rom values k ~ k* in the integrand and domina te  q°~(49; co) at high 
concentrat ions.  

The  expression for  q~(49) we use 

r/~(49) = r/0X(49) [7] 

agrees very well with exper iment  over  the entire fluid range (cf. figure 4) (Cohen and de Schepper  
1995). Physically, [7] implies that  the effective viscosity of  the suspension at  very high frequencies, 
or  very short  t imes (in fact: ins tantaneously)  is increased above  that  o f  the pure  solvent q0 by the 
fract ion o f  colloidal particle pairs at contac t  Z(49), i.e. that  are colliding, exchange m o m e n t u m  and 
therefore contr ibute  to the dissipation. The second te rm on the r.h.s, o f  [6], due to cage diffusion, 
is due to effects that  basically take place on the much  longer t ime scale of  the P6clet t ime 
~p = a2/4Do, the characterist ic t ime for  a Brownian  particle to displace itself diffusively over  its 
d iameter  a.  
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Figure 3. Reduced cage diffusion coefficient Dc(k)k2a2/Do as a function of ktr from light scattering for a 
charged colloid (Otr = 600 nm, ~b = 0.48), a neutral colloid ([S]a = 335 nm, ~b = 0.49) (Cohen and de 
Schepper 1991, 1992a, 1992b) and from theory (solid line, [2]). The two minima correspond to the first 
two maxima of S,~(k; qb). Here the diameter of the Debye sphere of the charged colloid is replaced by 
an effective hard sphere diameter which is determined by making a best fit of the experimental behavior 
of Soq(k; dp) of the charged colloid near k*, with an S~q(k; ok) of a corresponding hard sphere fluid (de 

Schepper et al. 1989). 
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F i g u r e  4.  R e l a t i v e  in f in i t e  f r e q u e n c y  v i s c o s i t y  q~(~b)/r/0 as  a f u n c t i o n  o f  4~. [ ]  Z h u  et al. (1992) ;  x v a n  
d e r  W e r f f  et al. (1989) ;  • C i c h o c k i  a n d  F e l d e r h o f  (1994) ,  w h o s e  p o i n t s  w e r e  o b t a i n e d  b y  a d i f f e r e n t  
a n a l y s i s  o f  v a n  d e r  W e r f f  et al . 's  d a t a  (1989)  t h a n  b y  the  a u t h o r s  t h e m s e l v e s .  T h e  so l id  l ine  c o r r e s p o n d s  

to [7]. 

The effective Newtonian  viscosity rfi,,~(4)) can be obtained directly f rom [6] by setting to = 0, 
leading, with [2] and [7] to 

(2/£/£ . . . .  [8] 

with ~c = ka. Explicit formulae for Soq(k; 4)) for hard sphere fluids for all q5 can be found in the 
li terature (Henderson and Grundke  1975). A useful Pad6 approximat ion of  [8], good to within 
0.25%, is 

I 1_.444)2Z(4))2 
r/~(4)) = ~/0Z(4)) 1 + 1 - 0.12414) + 10.464)2J [91 

where the Carnahan-Star l ing  expression for Z(4)) = (1 - 4)/2)(1 - 4))-3 can be used. 
It might be of  interest to outline how the representat ion [9] of  [8] was obtained. Using 

the asymptot ic  expressions for large k of  S (~ ;qS)=  l + O ( K - 2 ) ; d ( ~ ) =  I + O ( K  -2) and 
S~q(K; 4)) = 244)Z(4))[j2(~c)/K][1 + O(K-2)], one obtains: q~(4)) = r/0Z(4))[1 + 1.444)2Z(4)) 2 + 0(4)3)]. 
Dividing then the second term in the square brackets of  this expression for r/;~(4)) by a polynomial  
of  the second degree in 4), one adjusts the coefficients of  this polynomial  so that they agree with 
those obtained f rom [8]. 

For  to ~ 0 one obtains the visco-elastic behavior  of  the suspension with a complex 
qe~(4); to) = r/~(4); to) + ir/[~(~b; co) or equivalently r/*(qS; to) = [r/~(qS; to) - r/,_(4))]/[q~(4)) - 
r/~(4))] and r/l*(4); to) = ~/~"(4); to)/[q~(4)) - q~(4))], respectively. 

We remark that [6] with [7] and all equations following from them, like [8], do not contain any 
adjustable parameters  and are completely determined by those that determine the system: the 
viscosity r/0 o f  the solvent, the concentra t ion n and the volume fraction 4) (or the diameter a) of  the 
colloidal particles. 

4. COMPARISON WITH E X P E R I M E N T  

r/~"(4)) is compared  with experiment in figure 5 and 0*(4); to) as well as r/*(4); to) in figure 6. In 
figure 5 the contr ibut ions of  r/~(4)) are plotted separately and represen t - -on  the scale used in figure 
5 - - the  low concentra t ion behavior  for  0 < 4 )<  0.35 well. The steep increase in ~/~ for 
0.35 < 4) < 0.55 is due to the increasing difficulty for colloidal particles to escape from, i.e. diffuse 
out  of, their cages. The total increase in the relative effective viscosity q~" = ~/~'(4))/~/0 over the entire 
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fluid range 0 < ~b < 0.55 is about a factor 60. We note that the good agreement with experiment 
is not restricted to the benchmark experiments of van der Werff and de Kruif (1989), but also 
includes those of Jones et al. (1991, 1992) and Papir and Krieger (1970), which are all very well 
consistent with each other. 

Figure 6 shows, in agreement with van der Werff et al . 's  (1989) observation, that the 
concentration dependence of the visco-elasticity as a function of cozj(~b) is weak. 

Figure 7 gives a more detailed comparison for four concentrations. Here the phenomenological 
time z~(~b) is determined from the experimental asymptotic behavior of ~/R*(~b; co) for large co by 
setting (van der Werff et al. 1989): r/*(~b; co)= (3x~/27z)[cozl(q~)] -]/2, where z~(~b)~ Zv/4 for 
0 < ~b < 0.50 (cf. de Schepper et al., figure 2). 

The asymptotic, large co, behavior of r/~t~(qS;co) and r/~(~b;co) is both theoretically and 
experimentally as A (cozp)-L,2. The theoretical and experimental values of A differ, however, in good 
approximation by a factor 2/Z(~b), so that Ath/A ~xp ,~ 2/X(~b). This, combined with the similarity in 
shape of the theoretical and experimental r/~(~b; co) and r/~(~b; co), allows a determination of 
~/~(~b; co) and ~/~(q~; co) even when the experimental asymptotic co-behavior is unknown. For, one 
can then simply shift the theoretical curves for r/~(~b; to) and ~/~e(~b; co) plotted as a function of 
coZp, horizontally over an amount 2/g(~b), to obtain a good representation of the corresponding 
experimental curves (cf. figure 8) (Verberg et al. unpublished). 

5. DISCUSSION 

(1) The rheological behavior, defined as the shear rate ~'0 dependence of the viscosity, i.e. r/°~ 
(tk; ~0), for dense colloidal suspensions of hard spheres has been studied theoretically before (de 
Schepper and Cohen 1994). However, the relation of the theoretical results to those found 
experimentally is not unambiguous and needs further study. We mention in particular the very 
interesting work on the rheology of colloidal suspensions of Ronis (1986). He considered ~/°~(~b; 70) 
for soft charged particles interacting through a screened Coulomb potential at low densities. Then 
the cage-diffusion ([2]) is still relevant to describe the particle motions (Verberg et al. unpublished). 

(2) Recently Brady (1993) has published a different model for the Newtonian as well as the 
frequency dependent viscosity. His results can be obtained by scaling the low density solution of 
the two particle Smoluchowski equation (Cichocki and Felderhof 1991) and an adjustment of the 
pair correlation function at contact using experimental and computer simulation results. This leads 
to an excellent agreement of the Newtonian viscosity with experiment (virtually indistinguishable 
from our results for 0 < ~b < 0.55), but not of the visco-elastic behavior (Brady 1994; Cichocki and 
Felderhoff 1994). The underlying physics is, however, very different from ours, since the 

60 . . . . . . . . . .  

1" / 
40 / 

s . :  
0 0.2 0.4 ~ ~ 0.6 

Figure 5. Relative effective Newtonian viscosity q~(~b)/r/0 as a function of ~b. × van der Werff and de 
Kruif (1989); • Jones et al. (1991, 1992), [] Papir and Krieger (1970). - -  theory ([8] or [9]), -- . . . . .  

~ . ( ~ ) / ~ 0  = ~(~). 
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Figure 6. (a) ~t/~(6; co) and (b) ql*(4); o~) as a function of  o)z,(~b). Experimental points f rom Jones et  al .  
(1991). • for q5=0.44; O for q~ = 0.46; []  for ~b = 0.47; [ ]  for 7 = 0.48; V for ~b = 0.51; * for ~ = 0.52; 
× for q5 = 0.54 and /X for 6 = 0.57. Theory f rom [6]: . . . . .  ~b = 0.55; 6 = 0.50 and . . . .  
q5 = 0.45. The cloud of  points in (b) near o)z,(~b) = 1 should be discarded since they do not  satisfy the 

Kramers -Kron ig  relation (Cichocki and Felderhof  1994). 

cage-diffusion mechanism, crucial for high densities, is missing. It appears therefore that only our 
theory is able to account for the full frequency behavior of r/(qS; o~). 

(3) We note that we have not explicitly considered here any hydrodynamic interactions between 
the colloidal particles as transmitted by the solvent. While we believe that at high concentrations 
0.3 < 4 < 0.55 the hydrodynamic interactions are quenched to a very high extent due to the 
extreme proximity of the colloidal particles, they are certainly present at lower concentrations, as 
the calculations of Batchelor (1977) and Cichocki and Felderhof (1988) have shown. However, 
there is an increasing number of indications that at the very least part of these hydrodynamic 
interactions can be taken into account via the function Z(~b) (Verberg et  al. unpublished). As an 
example, we note that the theoretical result of Freed and Muthukumar (1982) and Beenakker 
(1984) for r/~(4~) to O(~b 2) 

r/~(~b) = r/0[l + 5(b + 4.84q~ 2] [10] 
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Figure 7. Relative real and imaginary parts of the visco-elastic t/(~b; o~): r/~(¢; ~o)/t/0 (©) and r/~(~b; oJ)/t/0 
( × ), respectively (cf. figure 6(a), (b)), as a function of ~ort (4)) for four suspensions studied experimentally 
by van der Werff and de Kruif (1989): (a) ~b = 0.54; (b) ~b = 0.52; (c) ~b = 0.48; (d) ~b = 0.46. Solid lines: 

theory from [6]. 
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which was compu ted  on the basis o f  hydrodynamic  particle interactions alone, is very c lose- -wi th in  
exper imental  a c c u r a c y - - t o  our  expression [7] for  ~/~(~b) to O(tk 2) 

5 
r/~(q5) = r/0[1 + ~q~ + 4.59q~ 2] [11] 

as well as to a r e summed  expression of  Beenakker ' s  for  r/~(~b), which takes into account  more  
compl ica ted  hydrodynamic  interact ions than conta ined in [10] (Beenakker  1984). 

4. In view of  the previous point ,  we conjecture that  the theoretical  expression [8] for ~7°~(q~; o~) 
can also be used for  concentra ted  charged colloidal suspensions,  where hydrodynamic  interactions 
are supposed to be negligible, on condi t ion that: (a) one identifies the hard sphere d iameter  tr with 
the d iameter  o f  the Debye  sphere; and (b) that  co does not  cause relevant deformat ions  of  the Debye  
spheres. The  few exper imental  data  for  charged colloidal suspensions available so f a r - - m a i n l y  for 

6 0 ~ :  ''",, . . . . . .  (a)] 4030 ~ , . . .  . . . . . . . . .  (b) 1 
o ° 

~'~ ~)0. 2 10 0 ; 0  2 i '04  00,0  ,04 
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Figure 8. Same as in figure 7 as a function of o~zp.. •. • theory from [6]; 

~. °-. 
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~)Tp -* 

theory shifted over 2/;((4)). 
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diffusion--seem to confirm a similarity of concentrated hard sphere and charged colloidal 
suspensions (Verberg et al. unpublished; de Schepper et al. 1989; Pusey et al. 1990; Cohen and 
de Schepper 1992a, 1992b). 

(5) Applications to more complicated colloidal suspensions, relevant for technology or biology, 
such as binary mixtures of colloidal particles, micelles (Liu and Sheu 1996; Liu 1996), 
micro-emulsions, etc. appear to be feasible. 
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